Difference between revisions of "Integral representation of polygamma for Re(z) greater than 0"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1}...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>[[Integral representation of polygamma|Theorem]]:</strong> The following formula holds: | + | <strong>[[Integral representation of polygamma|Theorem]]:</strong> The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$: |
$$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$ | $$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$ | ||
where $\psi^{(m)}$ denotes the [[polygamma]] and $e^{-zt}$ denotes the [[exponential]]. | where $\psi^{(m)}$ denotes the [[polygamma]] and $e^{-zt}$ denotes the [[exponential]]. |
Revision as of 19:23, 3 June 2016
Theorem: The following formula holds for $\mathrm{Re}(z)>0$ and $m>0$: $$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$ where $\psi^{(m)}$ denotes the polygamma and $e^{-zt}$ denotes the exponential.
Proof: █