Difference between revisions of "Second q-shifted factorial"
From specialfunctionswiki
(Created page with "The $q$-shifted factorial $\lt a;q \rt_n$ is given by $$\lt a;q \rt_n = \left\{ \begin{array}{ll} 1, & n=0; \displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots \end{arr...") |
|||
Line 1: | Line 1: | ||
− | The $q$-shifted factorial $\ | + | The $q$-shifted factorial $\langle a;q \rangle_n$ is given by |
− | $$\ | + | $$\langle a;q \rangle_n = \left\{ \begin{array}{ll} |
− | 1, & n=0; | + | 1, & n=0; \\ |
\displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots | \displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots | ||
\end{array} \right.$$ | \end{array} \right.$$ |
Revision as of 20:15, 3 June 2016
The $q$-shifted factorial $\langle a;q \rangle_n$ is given by $$\langle a;q \rangle_n = \left\{ \begin{array}{ll} 1, & n=0; \\ \displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots \end{array} \right.$$