Difference between revisions of "Second q-shifted factorial"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $q$-shifted factorial $\lt a;q \rt_n$ is given by $$\lt a;q \rt_n = \left\{ \begin{array}{ll} 1, & n=0; \displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots \end{arr...")
 
Line 1: Line 1:
The $q$-shifted factorial $\lt a;q \rt_n$ is given by
+
The $q$-shifted factorial $\langle a;q \rangle_n$ is given by
$$\lt a;q \rt_n = \left\{ \begin{array}{ll}
+
$$\langle a;q \rangle_n = \left\{ \begin{array}{ll}
1, & n=0;
+
1, & n=0; \\
 
\displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots
 
\displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots
 
\end{array} \right.$$
 
\end{array} \right.$$

Revision as of 20:15, 3 June 2016

The $q$-shifted factorial $\langle a;q \rangle_n$ is given by $$\langle a;q \rangle_n = \left\{ \begin{array}{ll} 1, & n=0; \\ \displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots \end{array} \right.$$