Difference between revisions of "Second q-shifted factorial"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\langle a;q \rangle_n = \left\{ \begin{array}{ll}
 
$$\langle a;q \rangle_n = \left\{ \begin{array}{ll}
 
1, & n=0; \\
 
1, & n=0; \\
\displaystyle\prod_{k=0}^{n-1} (1-q^(a+m)), & n=1,2,\ldots
+
\displaystyle\prod_{k=0}^{n-1} (1-q^{a+m}), & n=1,2,\ldots
 
\end{array} \right.$$
 
\end{array} \right.$$

Revision as of 20:16, 3 June 2016

The $q$-shifted factorial $\langle a;q \rangle_n$ is given by $$\langle a;q \rangle_n = \left\{ \begin{array}{ll} 1, & n=0; \\ \displaystyle\prod_{k=0}^{n-1} (1-q^{a+m}), & n=1,2,\ldots \end{array} \right.$$