Difference between revisions of "Book:Larry C. Andrews/Special Functions of Mathematics for Engineers"
From specialfunctionswiki
(Created page with "{{Book|Special Functions of Mathematics for Engineers|1992|McGraw-Hill|0-07-001848-0|Larry C. Andrews}} === Subject Matter === * Definition:Special Function|Special Functi...") |
(No difference)
|
Latest revision as of 21:57, 3 June 2016
Larry C. Andrews: Special Functions of Mathematics for Engineers
Published $1992$, McGraw-Hill
- ISBN 0-07-001848-0.
Subject Matter
Second edition of Special Functions for Engineers and Applied Mathematicians from 1985.
Contents
- Preface to the Second Edition
- Preface to the First Edition
- Notation for Special Functions
- Chapter 1. Infinite Series, Improper Integrals, and Infinite Products
- 1.1 Introduction
- 1.2 Infinite Series of Constants
- 1.2.1 The Geometric Series
- 1.2.2 Summary of Convergence Tests
- 1.2.3 Operations wllh Series
- 1.2.4 Factorials and Binomial Coefficients
- 1.3 Infinite Series of Functions
- 1.3.1 Properties of Uniformly Convergent Series
- 1.3.2 Power Series
- 1.3.3 Sums and Products of Power Series
- 1.4 Fourier Trigonometric Series
- 1.4.1 Cosine and Sine Series
- 1.5 Improper Integrals
- 1.5.1 Types of Improper Integrals
- 1.5.2 Convergence Tests
- 1.5.3 Pointwise and Uniform Convergence
- 1.6 Asymptotic Formulas
- 1.6.1 Small Arguments
- 1.6.2 Large Arguments
- 1.7 Infinite Products
- 1.7.1 Associated Infinite Series
- 1.7.2 Products of Functions
- Chapter 2. The Gamma Function and Related Functions
- 2.1 Introduction
- 2.2 Gamma Function
- 2.2.1 Integral Representations
- 2.2.2 Legendre Duplication Formula
- 2.2.3 Weierstrass' Infinite Product
- 2.3 Applications
- 2.3.1 Miscellaneous Problems
- 2.3.2 Fractional-Order Derivatives
- 2.4 Beta Function
- 2.5 Incomplete Gamma Function
- 2.5.1 Asymptotic Series
- 2.6 Digamma and Polygamma Functions
- 2.6.1 Integral Representations
- 2.6.2 Asymptotic Series
- 2.6.3 Polygamma Functions
- 2.6.4 Riemann Zeta Function
- Chapter 3. Other Functions Defined by Integrals
- 3.1 Introduction
- 3.2 Error Function and Related Functions
- 3.2.1 Asymptotic Series
- 3.2.2 Fresnel Integrals
- 3.3 Applications
- 3.3.1 Probability and Statistics
- 3.3.2 Heat Conduction In Solids
- 3.3.3 Vibrating Beams
- 3.4 Exponential Integral and Related Functions
- 3.4.1 Logarithmic Integral
- 3.4.2 Sine and Cosine Integrals
- 3.5 Elliptic Integrals
- 3.5.1 Limiting Values and Series Representations
- 3.5.2 The Pendulum Problem
- Chapter 4. Legendre Polynomials and Related Functions
- 4.1 Introduction
- 4.2 Legendre Polynomials
- 4.2.1 The Generating Function
- 4.2.2 Special Values and Recurrence Formulas
- 4.2.3 Legendre's Differential Equation
- 4.3 Other Representations of the Legendre Polynomials
- 4.3.1 Rodrigues' Formula
- 4.3.2 Laplace Integral Formula
- 4.3.3 Some Bounds on $P_n(x)$
- 4.4 Legendre Series
- 4.4.1 Orthogonality of the Polynomials
- 4.4.2 Finite Legendre Series
- 4.4.3 Infinite Legendre Series
- 4.5 Convergence of the Series
- 4.5.1 Piecewise Continuous and Piecewise Smooth Functions
- 4.5.2 Pointwise Convergence
- 4.6 Legendre Functions of the Second Kind
- 4.6.1 Basic Properties
- 4.7 Associated Legendre Functions
- 4.7.1 Basic Properties of $P_n^m(x)$
- 4.8 Applications
- 4.8.1 Electric Potential due to a Sphere
- 4.8.2 Steady-State Temperatures In a Sphere
- Chapter 5. Other Orthogonal Polynomials
- 5.1 Introduction
- 5.2 Hermite Polynomials
- 5.2.1 Recurrence Formulas
- 5.2.2 Hermite Series
- 5.2.3 Simple Harmonic Oscillator
- 5.3 Laguerre Polynomials
- 5.3.1 Recurrence Formulas
- 5.3.2 Laguerre Series
- 5.3.3 Associated Laguerre Polynomials
- 5.3.4 The Hydrogen Atom
- 5.4 Generalized Polynomial Sets
- 5.4.1 Gegenbauer Polynomials
- 5.4.2 Chebyshev Polynomials
- 5.4.3 Jacobi Polynomials
- Chapter 6. Bessel Functions
- 6.1 Introduction
- 6.2 Bessel Functions of the First Kind
- 6.2.1 The Generating Function
- 6.2.2 Bessel Functions of Nonintegral Order
- 6.2.3 Recurrence Formulas
- 6.2.4 Bessel's Differential Equation
- 6.3 Integral Representations
- 6.3.1 Bessel's Problem
- 6.3.2 Geometric Problems
- 6.4 Integrals of Bessel Functions
- 6.4.1 Indefinite Integrals
- 6.4.2 Definite Integrals
- 6.5 Series Involving Bessel Functions
- 6.5.1 Addition Formulas
- 6.5.2 Orthogonality of Bessel Functions
- 6.5.3 Fourier-Bessel Series
- 6.6 Bessel Functions of the Second Klnd
- 6.6.1 Serles Expansion for $Y_n(x)$
- 6.6.2 Asymptotic Formulas for Small Arguments
- 6.6.3 Recurrence Formulas
- 6.7 Differential Equations Related to Bessel's Equation
- 6.7.1 The Oscillating Chaln
- Chapter 7. Bessel Functions of Other Kinds
- 7.1 Introduction
- 7.2 Modified Bessel Functions
- 7.2.1 Modified Bessel Functions of the Second Kind
- 7.2.2 Recurrence Formulas
- 7.2.3 Generating Function and Addition Theorems
- 7.3 Integral Relations
- 7.3.1 Integral Representations
- 7.3.2 Integrals of Modified Bessel Functions
- 7.4 Spherical Bessel Functions
- 7.4.1 Recurrence Formulas
- 7.4.2 Modified Spherical Bessel Functions
- 7.5 Other Bessel Functions
- 7.5.1 Hankel Functions
- 7.5.2 Struve Functions
- 7.5.3 Kelvin's Functions
- 7.5.4 Airy Functions
- 7.6 Asymptotlc Formulas
- 7.6.1 Small Arguments
- 7.6.2 Large Arguments
- Chapter 8. Applications Involving Bessel Functions
- 8.1 Introductions
- 8.2 Problems in Mechanics
- 8.2.1 The Lengthening Pendulum
- 8.2.2 Buckling of a Long Column
- 8.3 Statistical Communication Theory
- 8.3.1 Narrowband Nolse and Envelope Detection
- 8.3.2 Non-Rayleigh Radar Sea Clutter
- 8.4 Heat Conduction and Vibration Phenomena
- 8.4.1 Radial Symmetric Problems Involving Circles
- 8.4.2 Radial Symmetric Problems Involving Cylinders
- 8.4.3 The Helmholtz Equatlon
- 8.5 Step-Index Optical Fibers
- Chapter 9. The Hypergeometric Function
- 9.1 Introduction
- 9.2 The Pochhammer Symbol
- 9.3 The Function $F(a, b; c; x)$
- 9.3.1 Elementary Properties
- 9.3.2 Integral Representation
- 9.3.3 The Hypergeometric Equation
- 9.4 Relation to Other Functions
- 9.4.1 Legendre Functions
- 9.5 Summing Series and Evaluating Integrals
- 9.5.1 Action-Angle Variables
- Chapter 10. The Confluent Hypergeometric Functions
- 10.1 Introduction
- 10.2 The Functions $M(a; c; x)$ and $U(a; c; x)$
- 10.2.1 Elementary Properties of $M(a; c; x)$
- 10.2.2 Confluent Hypergeometric Equation and $U(a; c; x)$
- 10.2.3 Asymptotic Formulas
- 10.3 Relation to Other Functions
- 10.3.1 Hermite Functions
- 10.3.2 Laguerre Functions
- 10.4 Whittaker Functions
- Chapter 11. Generalized Hypergeometric Functions
- 11.1 Introduction
- 11.2 The Set of Functions ${}_pF_q$
- 11.2.1 Hypergeometric-Type Series
- 11.3 Other Generalizations
- 11.3.1 The Meijer $G$ Function
- 11.3.2 The MacRobert $E$ Function
- Chapter 12. Applications Involving Hypergeometric-Type Functions
- 12.1 Introduction
- 12.2 Statistical Communication Theory
- 12.2.1 Nonlinear Devices
- 12.3 Fluid Mechanics
- 12.3.1 Unsteady Hydrodynamic Flow Past an Infinite Plate
- 12.3.2 Transonic Flow and the Euler-Tricomi Equation
- 12.4 Random Fields
- 12.4.1 Structure Function of Temperature
- Bibliography
- Appendix: A List of Special Function Formulas
- Selected Answers to Exercises
- Index