Difference between revisions of "Weierstrass factorization of sine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Weierstrass factorization of sine|Proposition]]:</strong> The [[Weierstrass factorization]] of [[Sine|$\sin(z)$]] is
+
The following formula holds:
$$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right).$$
+
$$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$
 +
where $\sin$ is the [[sine]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
==Proof==
 +
 +
==References==

Revision as of 00:31, 4 June 2016

Theorem

The following formula holds: $$\sin(z) = z \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{z^2}{k^2\pi^2} \right),$$ where $\sin$ is the sine function.

Proof:

</div>

Proof

References