Difference between revisions of "Binomial coefficient (n choose n) equals 1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $${n \choose n} = 1,$$ where ${n \choose n}$ denotes the binomial coefficient. ==Proof== ==References== * {{BookReference|Handboo...")
 
 
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Binomial coefficient (n choose 0) equals 1|next=Sum over bottom binomial coefficient with top fixed equals 2^n}}: 3.1.5
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Binomial coefficient (n choose 0) equals 1|next=Sum over bottom of binomial coefficient with top fixed equals 2^n}}: 3.1.5

Latest revision as of 02:49, 4 June 2016

Theorem

The following formula holds: $${n \choose n} = 1,$$ where ${n \choose n}$ denotes the binomial coefficient.

Proof

References