Difference between revisions of "Binomial coefficient (n choose n) equals 1"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $${n \choose n} = 1,$$ where ${n \choose n}$ denotes the binomial coefficient. ==Proof== ==References== * {{BookReference|Handboo...") |
|||
Line 6: | Line 6: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Binomial coefficient (n choose 0) equals 1|next=Sum over bottom binomial coefficient with top fixed equals 2^n}}: 3.1.5 | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Binomial coefficient (n choose 0) equals 1|next=Sum over bottom of binomial coefficient with top fixed equals 2^n}}: 3.1.5 |
Latest revision as of 02:49, 4 June 2016
Theorem
The following formula holds: $${n \choose n} = 1,$$ where ${n \choose n}$ denotes the binomial coefficient.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 3.1.5