Difference between revisions of "Binomial coefficient"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
[[Binomial theorem]]
+
[[Binomial theorem]]<br />
 
[[Binomial coefficient (n choose k) equals (n choose (n-k))]]<br />
 
[[Binomial coefficient (n choose k) equals (n choose (n-k))]]<br />
 
[[Binomial coefficient (n choose k) equals (-1)^k ((k-n-1) choose k)]]<br />
 
[[Binomial coefficient (n choose k) equals (-1)^k ((k-n-1) choose k)]]<br />

Revision as of 02:57, 4 June 2016

The binomial coefficients are defined by the formula $${}_nC_k:={n \choose k} = \dfrac{n!}{(n-k)!k!}.$$


Properties

Binomial theorem
Binomial coefficient (n choose k) equals (n choose (n-k))
Binomial coefficient (n choose k) equals (-1)^k ((k-n-1) choose k)
Binomial coefficient ((n+1) choose k) equals (n choose k) + (n choose (k-1))
Binomial coefficient (n choose 0) equals 1
Binomial coefficient (n choose n) equals 1
Sum over bottom of binomial coefficient with top fixed equals 2^n
Alternating sum over bottom of binomial coefficient with top fixed equals 0

Videos

Pascal's Triangle and the Binomial Coefficients
Example of choose function (Binomial Coefficient)
Binomial coefficients

References