Difference between revisions of "Gamma(1)=1"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Value of Gamma(1)|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\Gamma(1)=1,$$
 
$$\Gamma(1)=1,$$
 
where $\Gamma$ denotes the [[gamma]] function.
 
where $\Gamma$ denotes the [[gamma]] function.
<div class="mw-collapsible-content">
+
==Proof==
<strong>Proof:</strong> Compute
+
Compute
 
$$\begin{array}{ll}
 
$$\begin{array}{ll}
 
\Gamma(1) &= \displaystyle\int_0^{\infty} \xi^{0} e^{-\xi} \mathrm{d}\xi \\
 
\Gamma(1) &= \displaystyle\int_0^{\infty} \xi^{0} e^{-\xi} \mathrm{d}\xi \\
Line 12: Line 12:
 
\end{array}$$
 
\end{array}$$
 
as was to be shown. █
 
as was to be shown. █
</div>
 
</div>
 

Revision as of 09:31, 4 June 2016

Theorem

The following formula holds: $$\Gamma(1)=1,$$ where $\Gamma$ denotes the gamma function.

Proof

Compute $$\begin{array}{ll} \Gamma(1) &= \displaystyle\int_0^{\infty} \xi^{0} e^{-\xi} \mathrm{d}\xi \\ &= \displaystyle\int_0^{\infty} e^{-\xi} \mathrm{d}\xi \\ &= \left[ -e^{-\xi} \right]_{0}^{\infty} \\ &= 1, \end{array}$$ as was to be shown. █