Difference between revisions of "Euler-Mascheroni constant"
Line 1: | Line 1: | ||
− | $$\gamma = \lim_{m \rightarrow \infty} 1 + \dfrac{1}{2} + \ldots + \dfrac{1}{m}-\log(m) = 0.577215664901532 \ldots$$ | + | The Euler-Mascheroni constant is the number $\gamma$ defined by the formula |
+ | $$\gamma = \lim_{m \rightarrow \infty} 1 + \dfrac{1}{2} + \ldots + \dfrac{1}{m}-\log(m) = 0.577215664901532 \ldots.$$ | ||
+ | =Properties= | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>Theorem:</strong> The limit defining $\gamma$ exists. | <strong>Theorem:</strong> The limit defining $\gamma$ exists. | ||
Line 30: | Line 32: | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | [[Reciprocal gamma written as an infinite product]]<br /> | |
− | |||
− | |||
{{:Exponential integral Ei series}} | {{:Exponential integral Ei series}} | ||
Line 42: | Line 42: | ||
=See Also= | =See Also= | ||
[[Meissel-Mertens constant]] | [[Meissel-Mertens constant]] | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Reciprocal gamma written as an infinite product|next=}}: §1.1 (4) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Euler-Mascheroni constant | ||
+ | * {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=Reciprocal gamma written as an infinite product|next=}}: §1.1 (4) | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 09:45, 4 June 2016
The Euler-Mascheroni constant is the number $\gamma$ defined by the formula $$\gamma = \lim_{m \rightarrow \infty} 1 + \dfrac{1}{2} + \ldots + \dfrac{1}{m}-\log(m) = 0.577215664901532 \ldots.$$
Contents
Properties
Theorem: The limit defining $\gamma$ exists.
Proof: Let $u_n=\displaystyle\int_0^1 \dfrac{t}{n(t+n)} dt$. Clearly, $$0 < u_n < \displaystyle\int_0^1 \dfrac{1}{n^2} dt = \dfrac{1}{n^2}.$$ Now compute $$\begin{array}{ll} u_n &= \dfrac{1}{n} \displaystyle\int_0^1 1 - \dfrac{n}{t+n} dt \\ &= \dfrac{1}{n} \left[ 1 - n(\log (1+n)-\log n) \right] \\ &= \dfrac{1}{n} - \log \left(\dfrac{n+1}{n} \right). \end{array}$$
Since $u_n < \dfrac{1}{n^2}$ and we know that $\displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k^2}$ converges (it is the Riemann zeta function evaluated at $z=2$), we can conclude that $\displaystyle\sum_{k=1}^{\infty} u_k$ also converges.
Notice that due to telescoping and the properties of the logarithm, $$\displaystyle\sum_{k=1}^m \log \left( \dfrac{k+1}{k} \right) = \log \left(\dfrac{2}{1} \right) + \log\left( \dfrac{3}{2} \right) + \ldots \log \left( \dfrac{m+1}{m} \right)= \log(m+1)$$ Now we see $$\begin{array}{ll} \displaystyle\sum_{k=1}^{\infty} u_k &= \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{k} - \log \left( \dfrac{k+1}{k} \right) \\ &=\displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^{m} \dfrac{1}{k} - \log(m+1) \right]. \end{array}$$ Since $\displaystyle\lim_{m \rightarrow \infty} \log \left( \dfrac{m+1}{m} \right)=0$, we may rewrite it as $\log(m+1)-\log(m)$ and insert it into the above equation to get $$\begin{array}{ll} \displaystyle\sum_{k=1}^{\infty} u_k &=\displaystyle\lim_{m \rightarrow \infty} \left[ \displaystyle\sum_{k=1}^{m} \dfrac{1}{k} - \log(m+1) + \log(m+1)-\log(m) \right] \\ &= \displaystyle\lim_{m \rightarrow \infty} \left( 1 + \dfrac{1}{2} + \dfrac{1}{3} + \ldots + \dfrac{1}{m} - \log(m) \right), \end{array}$$ as was to be shown. █
Reciprocal gamma written as an infinite product
Theorem
The following formula holds for $x>0$: $$\mathrm{Ei}(x) = \gamma + \log x + \displaystyle\sum_{k=1}^{\infty} \dfrac{x^k}{kk!},$$ where $\mathrm{Ei}$ denotes the exponential integral Ei, $\log$ denotes the logarithm, and $\gamma$ denotes the Euler-Mascheroni constant.
Proof
References
- James Whitbread Lee Glaisher: On certain definite integrals involving the exponential-integral (1881)... (previous)... (next) (note: expresses the logarithm term as $\frac{1}{4}\log(x^4)$)
Further properties
The Euler-Mascheroni constant appears in the definition of...
- the hyperbolic cosine integral
- the Barnes G function
See Also
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous): §1.1 (4)
Euler-Mascheroni constant
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous): §1.1 (4)