Difference between revisions of "Value of Ai'(0)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{Ai}'(0)=-\dfrac{1}{3^{\frac{1}{3}}\Ga...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Value of Ai'(0)|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\mathrm{Ai}'(0)=-\dfrac{1}{3^{\frac{1}{3}}\Gamma\left(\frac{1}{3}\right)},$$
 
$$\mathrm{Ai}'(0)=-\dfrac{1}{3^{\frac{1}{3}}\Gamma\left(\frac{1}{3}\right)},$$
 
where $\mathrm{Ai}$ denotes the [[Airy Ai]] function and $\Gamma$ denotes the [[gamma]] function.
 
where $\mathrm{Ai}$ denotes the [[Airy Ai]] function and $\Gamma$ denotes the [[gamma]] function.
<div class="mw-collapsible-content">
+
==Proof==
<strong>Proof:</strong> proof goes here █
 
</div>
 
</div>
 

Revision as of 07:58, 5 June 2016

Theorem

The following formula holds: $$\mathrm{Ai}'(0)=-\dfrac{1}{3^{\frac{1}{3}}\Gamma\left(\frac{1}{3}\right)},$$ where $\mathrm{Ai}$ denotes the Airy Ai function and $\Gamma$ denotes the gamma function.

Proof