Difference between revisions of "Anger function"

From specialfunctionswiki
Jump to: navigation, search
 
Line 29: Line 29:
  
 
=References=
 
=References=
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Relationship between modified Struve L and modified spherical Bessel j functions|next=Anger of integer order is Bessel J}}:12.3.1
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Relationship between modified Struve L and modified spherical Bessel j functions|next=Anger of integer order is Bessel J}}: 12.3.1

Latest revision as of 04:05, 6 June 2016

Let $\nu \in \mathbb{C}$. The Anger function $\mathbf{J}_{\nu}$ is defined by $$\mathbf{J}_{\nu}(z) = \dfrac{1}{\pi} \displaystyle\int_0^{\pi} \cos(\nu \theta - z \sin(\theta)) \mathrm{d}\theta.$$

Properties

Value of Anger at 0
Anger recurrence relation
Anger derivative recurrence
Relationship between Anger function and Bessel J sub nu
Relationship between Weber function and Anger function
Relationship between Anger function and Weber function

See Also

Bessel J
Weber function

References