Difference between revisions of "Weber function"

From specialfunctionswiki
Jump to: navigation, search
 
Line 10: Line 10:
  
 
=References=
 
=References=
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Anger of integer order is Bessel J|next=}}: 12.3.3
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Anger of integer order is Bessel J|next=Relationship between Anger function and Weber function}}: 12.3.3
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]
 
[[Category:Definition]]
 
[[Category:Definition]]

Latest revision as of 04:13, 6 June 2016

The Weber function is defined by $$\mathbf{E}_{\nu}(z)=\dfrac{1}{\pi} \displaystyle\int_0^{\pi} \sin(\nu \theta - z \sin(\theta)) \mathrm{d}\theta.$$

Properties

Relationship between Weber function and Anger function
Relationship between Anger function and Weber function
Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1
Relationship between Weber function 2 and Struve function 2

References