Difference between revisions of "Cotangent"
From specialfunctionswiki
Line 11: | Line 11: | ||
=Properties= | =Properties= | ||
− | + | [[Derivative of cotangent]]<br /> | |
− | + | [[Relationship between cot and coth]]<br /> | |
− | + | [[Relationship between coth and cot]]<br /> | |
− | + | [[Relationship between cot, Gudermannian, and csch]]<br /> | |
− | + | [[Relationship between csch, inverse Gudermannian, and cot]]<br /> | |
=See Also= | =See Also= |
Revision as of 04:32, 6 June 2016
The cotangent function is defined by the formula $$\cot(z)=\dfrac{1}{\tan z} \equiv \dfrac{\cos(z)}{\sin(z)},$$ where $\tan$ denotes the tangent function.
Domain coloring of $\cot$.
Properties
Derivative of cotangent
Relationship between cot and coth
Relationship between coth and cot
Relationship between cot, Gudermannian, and csch
Relationship between csch, inverse Gudermannian, and cot
See Also
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 4.3.147