Difference between revisions of "Exponential of logarithm"
From specialfunctionswiki
(Created page with "==References== * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm (multivalued) of the exponential|next=Exponen...") |
|||
Line 1: | Line 1: | ||
+ | ==Theorem== | ||
+ | The following formula holds: | ||
+ | $$\exp\left( \log(z) \right)=z,$$ | ||
+ | where $\exp$ denotes the [[exponential]] and $\log$ denotes the [[logarithm]]. | ||
+ | |||
+ | ==Proof== | ||
+ | |||
==References== | ==References== | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm (multivalued) of the exponential|next=Exponential of logarithm}}: 4.2.4 | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Logarithm (multivalued) of the exponential|next=Exponential of logarithm}}: 4.2.4 |
Revision as of 21:02, 6 June 2016
Theorem
The following formula holds: $$\exp\left( \log(z) \right)=z,$$ where $\exp$ denotes the exponential and $\log$ denotes the logarithm.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 4.2.4