Difference between revisions of "Relationship between arctan and arccot"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{arctan}(z) = \...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right),$$ | $$\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right),$$ | ||
where $\mathrm{arctan}$ denotes the [[arctan|inverse tangent]] and $\mathrm{arccot}$ denotes the [[arccot|inverse cotangent]]. | where $\mathrm{arctan}$ denotes the [[arctan|inverse tangent]] and $\mathrm{arccot}$ denotes the [[arccot|inverse cotangent]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] |
Revision as of 07:26, 8 June 2016
Theorem
The following formula holds: $$\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right),$$ where $\mathrm{arctan}$ denotes the inverse tangent and $\mathrm{arccot}$ denotes the inverse cotangent.