Difference between revisions of "Relationship between arctan and arccot"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{arctan}(z) = \...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between arctan and arccot|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right),$$
 
$$\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right),$$
 
where $\mathrm{arctan}$ denotes the [[arctan|inverse tangent]] and $\mathrm{arccot}$ denotes the [[arccot|inverse cotangent]].
 
where $\mathrm{arctan}$ denotes the [[arctan|inverse tangent]] and $\mathrm{arccot}$ denotes the [[arccot|inverse cotangent]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]

Revision as of 07:26, 8 June 2016

Theorem

The following formula holds: $$\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right),$$ where $\mathrm{arctan}$ denotes the inverse tangent and $\mathrm{arccot}$ denotes the inverse cotangent.

Proof

References