Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The inverse hyperbolic sine function $\mathrm{arcsinh} \colon \mathbb{R} \rightarrow \mathbb{R}$ function is the [[inverse function]] of the [[sinh|hyperbolic sine]] function  
+
__NOTOC__
<!-- defined by
+
The inverse hyperbolic sine function $\mathrm{arcsinh} \colon \mathbb{R} \rightarrow \mathbb{R}$ function is the [[inverse function]] of the [[sinh|hyperbolic sine]] function.
$$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$
 
-->
 
  
 
<div align="center">
 
<div align="center">
Line 12: Line 10:
  
 
=Properties=
 
=Properties=
{{:Derivative of arcsinh}}
+
[[Derivative of arcsinh]]<br />
  
 
=See Also=
 
=See Also=

Revision as of 07:57, 8 June 2016

The inverse hyperbolic sine function $\mathrm{arcsinh} \colon \mathbb{R} \rightarrow \mathbb{R}$ function is the inverse function of the hyperbolic sine function.

Properties

Derivative of arcsinh

See Also

Arcsin
Sine
Sinh

References

Abramowitz&Stegun

<center>Inverse hyperbolic trigonometric functions
</center>