Difference between revisions of "Legendre chi"
From specialfunctionswiki
Line 3: | Line 3: | ||
=Properties= | =Properties= | ||
− | + | [[Derivative of Legendre chi]]<br /> | |
− | + | [[Legendre chi in terms of polylogarithm]]<br /> | |
− | + | [[Catalan's constant using Legendre chi]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=References= | =References= |
Revision as of 07:59, 8 June 2016
The Legendre chi function $\chi_{\nu}$ is defined by $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$
Properties
Derivative of Legendre chi
Legendre chi in terms of polylogarithm
Catalan's constant using Legendre chi