Difference between revisions of "Catalan's constant using Hurwitz zeta"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Catalan's constant using Hurwitz zeta|Proposition]]:</strong> The following formula holds:
+
The following formula holds:
 
$$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$
 
$$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$
 
where $K$ is [[Catalan's constant]], $A$ is the [[Glaisher–Kinkelin constant]], and $\zeta'$ denotes the partial derivative of the [[Hurwitz zeta]] function with respect to the first argument.
 
where $K$ is [[Catalan's constant]], $A$ is the [[Glaisher–Kinkelin constant]], and $\zeta'$ denotes the partial derivative of the [[Hurwitz zeta]] function with respect to the first argument.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 08:01, 8 June 2016

Theorem

The following formula holds: $$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$ where $K$ is Catalan's constant, $A$ is the Glaisher–Kinkelin constant, and $\zeta'$ denotes the partial derivative of the Hurwitz zeta function with respect to the first argument.

Proof

References