Difference between revisions of "Tanhc"

From specialfunctionswiki
Jump to: navigation, search
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\dfrac{d}{dz} \mathrm{tanhc}(z) = \dfrac{\mathrm{sech}^2(z)}{z}-\dfrac{\mathrm{tanh(z)}}{z^2}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<center>{{:*-c functions footer}}</center>
 
<center>{{:*-c functions footer}}</center>
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 08:02, 8 June 2016

The $\mathrm{tanhc}$ function is defined by $$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$


Properties

<center>$*$-c functions
</center>