Difference between revisions of "Taylor series for Gudermannian"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\dfrac{\mathrm{gd}(x)}{2} = \d...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Taylor series for Gudermannian|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\dfrac{\mathrm{gd}(x)}{2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k \mathrm{tanh}^{2k+1}(\frac{x}{2})}{2k+1},$$
 
$$\dfrac{\mathrm{gd}(x)}{2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k \mathrm{tanh}^{2k+1}(\frac{x}{2})}{2k+1},$$
 
where $\mathrm{gd}$ is the [[Gudermannian]] and $\tanh$ is the [[tanh|hyperbolic tangent]].
 
where $\mathrm{gd}$ is the [[Gudermannian]] and $\tanh$ is the [[tanh|hyperbolic tangent]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 08:08, 8 June 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{gd}(x)}{2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k \mathrm{tanh}^{2k+1}(\frac{x}{2})}{2k+1},$$ where $\mathrm{gd}$ is the Gudermannian and $\tanh$ is the hyperbolic tangent.

Proof

References