Difference between revisions of "Bessel Y"

From specialfunctionswiki
Jump to: navigation, search
Line 20: Line 20:
 
=References=
 
=References=
 
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0021%7CLOG_0023 Bessel's functions of the second order - C.V. Coates]<br />
 
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0021%7CLOG_0023 Bessel's functions of the second order - C.V. Coates]<br />
<center>{{:Bessel functions footer}}</center>
+
 
 +
{{:Bessel functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]
 
{{:Bessel functions footer}}
 

Revision as of 19:14, 10 June 2016

Bessel functions of the second kind $Y_{\nu}$ are defined via the formula $$Y_{\nu}(z)=\dfrac{J_{\nu}(z)\cos(\nu \pi)-J_{-\nu}(z)}{\sin(\nu \pi)}.$$ Sometimes these functions are called Neumann functions and have the notation $N_{\nu}$ instead of $Y_{\nu}$.


Properties

References

Bessel's functions of the second order - C.V. Coates

Bessel functions