Difference between revisions of "Polygamma reflection formula"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$(-1)^m \psi^{(m)}(1-z)-\psi^{(m...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$(-1)^m \psi^{(m)}(1-z)-\psi^{(m)}(z)=\pi \dfrac{\mathrm{d}^m}{\mathrm{d}z^m} \cot(\pi z),$$ | $$(-1)^m \psi^{(m)}(1-z)-\psi^{(m)}(z)=\pi \dfrac{\mathrm{d}^m}{\mathrm{d}z^m} \cot(\pi z),$$ | ||
where $\psi^{(m)}$ denotes the [[polygamma]], $\pi$ denotes [[pi]], and $\cot$ denotes the [[cotangent]]. | where $\psi^{(m)}$ denotes the [[polygamma]], $\pi$ denotes [[pi]], and $\cot$ denotes the [[cotangent]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Revision as of 06:33, 11 June 2016
Theorem
The following formula holds: $$(-1)^m \psi^{(m)}(1-z)-\psi^{(m)}(z)=\pi \dfrac{\mathrm{d}^m}{\mathrm{d}z^m} \cot(\pi z),$$ where $\psi^{(m)}$ denotes the polygamma, $\pi$ denotes pi, and $\cot$ denotes the cotangent.