Difference between revisions of "Relation between polygamma and Hurwitz zeta"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1} m! \zeta(m+1,z),$$ where $\psi^{(m)}$ de...") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\psi^{(m)}(z)=(-1)^{m+1} m! \zeta(m+1,z),$$ | $$\psi^{(m)}(z)=(-1)^{m+1} m! \zeta(m+1,z),$$ | ||
where $\psi^{(m)}$ denotes the [[polygamma]] and $\zeta$ denotes the [[Hurwitz zeta]] function. | where $\psi^{(m)}$ denotes the [[polygamma]] and $\zeta$ denotes the [[Hurwitz zeta]] function. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 06:34, 11 June 2016
Theorem
The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1} m! \zeta(m+1,z),$$ where $\psi^{(m)}$ denotes the polygamma and $\zeta$ denotes the Hurwitz zeta function.