Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
Line 10: Line 10:
 
</div>
 
</div>
  
<center>{{:*-integral functions footer}}</center>
+
{{:*-integral functions footer}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 23:08, 11 June 2016

The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t,$$ where $\cosh$ denotes the hyperbolic cosine.

$\ast$-integral functions