Difference between revisions of "Sine integral"
From specialfunctionswiki
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
The sine integral is defined by | The sine integral is defined by | ||
$$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} z|<\pi,$$ | $$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} z|<\pi,$$ | ||
Line 19: | Line 20: | ||
*[http://dlmf.nist.gov/8.21 Generalized Sine and Cosine Integrals] | *[http://dlmf.nist.gov/8.21 Generalized Sine and Cosine Integrals] | ||
− | + | {{:*-integral functions footer}} | |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 23:10, 11 June 2016
The sine integral is defined by $$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) \mathrm{d}t, \quad |\mathrm{arg} z|<\pi,$$ where $\mathrm{sinc}$ denotes the Sinc function.
Domain coloring of $\mathrm{Si}$.
Relationship to other functions
Relationship between exponential integral Ei, cosine integral, and sine integral
Videos
Laplace Transform of Sine Integral