Difference between revisions of "Prime zeta P"

From specialfunctionswiki
Jump to: navigation, search
(References)
Line 16: Line 16:
 
=References=
 
=References=
 
* {{PaperReference|The Sums of the Series of the Reciprocals of the Prime Numbers and of Their Powers|1881|Charles Watkins Merrifield}}
 
* {{PaperReference|The Sums of the Series of the Reciprocals of the Prime Numbers and of Their Powers|1881|Charles Watkins Merrifield}}
 +
* {{PaperReference|On the Sums of the Inverse Powers of the Prime Numbers|1891|James Whitbread Lee Glaisher}}
  
 
Fröberg, Carl-Erik . On the prime zeta function. Nordisk Tidskr. Informationsbehandling (BIT)  8  1968 187--202.<br />
 
Fröberg, Carl-Erik . On the prime zeta function. Nordisk Tidskr. Informationsbehandling (BIT)  8  1968 187--202.<br />
 
[http://math.stackexchange.com/questions/49383/how-does-sum-px-p-s-grow-asymptotically-for-textres-1/49434#49434 How does ∑p<xp−s grow asymptotically for Re(s)<1?] <br />
 
[http://math.stackexchange.com/questions/49383/how-does-sum-px-p-s-grow-asymptotically-for-textres-1/49434#49434 How does ∑p<xp−s grow asymptotically for Re(s)<1?] <br />
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0025%7CLOG_0038 On the sums of the inverse powers of the prime numbers - J.W.L. Glaisher]<br />
 
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 19:22, 15 June 2016

The prime zeta function is defined by $$P(z) = \displaystyle\sum_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p^z},$$ where $\mathrm{Re}(z)>1$. It can be extended outside of this domain via analytic continuation.


Properties

Relationship between prime zeta, Möbius function, logarithm, and Riemann zeta

References

Fröberg, Carl-Erik . On the prime zeta function. Nordisk Tidskr. Informationsbehandling (BIT) 8 1968 187--202.
How does ∑p<xp−s grow asymptotically for Re(s)<1?