Difference between revisions of "Relationship between Airy Bi and modified Bessel I"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
===Theorem===
+
==Theorem==
 
The following formula holds:
 
The following formula holds:
 
$$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$
 
$$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$
 
where $\mathrm{Bi}$ denotes the [[Airy Bi]] function and $I_{\nu}$ denotes the [[Modified Bessel I sub nu|modified Bessel $I$]].
 
where $\mathrm{Bi}$ denotes the [[Airy Bi]] function and $I_{\nu}$ denotes the [[Modified Bessel I sub nu|modified Bessel $I$]].
  
===Proof===
+
==Proof==
 +
 
 +
==References==
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:16, 16 June 2016

Theorem

The following formula holds: $$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$ where $\mathrm{Bi}$ denotes the Airy Bi function and $I_{\nu}$ denotes the modified Bessel $I$.

Proof

References