Difference between revisions of "Mangoldt"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
__NOTOC__
 
The Mangoldt function is defined by the formula
 
The Mangoldt function is defined by the formula
 
$$\Lambda(n) = \left\{ \begin{array}{ll}
 
$$\Lambda(n) = \left\{ \begin{array}{ll}
Line 6: Line 7:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[Relationship between logarithm and Mangoldt]]
<strong>Theorem:</strong> The following formula holds:
 
$$\log(n) = \displaystyle\sum_{d | n} \Lambda(d),$$
 
where $\log$ denotes the [[logarithm|natural logarithm]] and the notation $d | n$ denotes that $d$ is a divisor of $n$.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=Videos=
 
=Videos=

Revision as of 16:30, 16 June 2016

The Mangoldt function is defined by the formula $$\Lambda(n) = \left\{ \begin{array}{ll} \log p &; n=p^k \mathrm{\hspace{2pt}for\hspace{2pt}some\hspace{2pt}prime\hspace{2pt}}p\mathrm{\hspace{2pt}and\hspace{2pt}integer\hspace{2pt}}k\geq 1, \\ 0 &; \mathrm{otherwise}. \end{array} \right.$$

Properties

Relationship between logarithm and Mangoldt

Videos

Number Theory 31: Liouville and mangoldt functions
Number theory: Arithmetic functions #1