Difference between revisions of "Q-number"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by  
 
Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by  
 
$$[a]_q=\dfrac{1-q^a}{1-q}.$$
 
$$[a]_q=\dfrac{1-q^a}{1-q}.$$
 +
 +
=Properties=
 +
[[q-number when a=n is a natural number]]<br />
 +
[[q-factorial]]<br />
 +
  
 
=References=
 
=References=

Revision as of 22:26, 16 June 2016

Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by $$[a]_q=\dfrac{1-q^a}{1-q}.$$

Properties

q-number when a=n is a natural number
q-factorial


References