Difference between revisions of "Q-number"
From specialfunctionswiki
Line 1: | Line 1: | ||
Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by | Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by | ||
$$[a]_q=\dfrac{1-q^a}{1-q}.$$ | $$[a]_q=\dfrac{1-q^a}{1-q}.$$ | ||
+ | |||
+ | =Properties= | ||
+ | [[q-number when a=n is a natural number]]<br /> | ||
+ | [[q-factorial]]<br /> | ||
+ | |||
=References= | =References= |
Revision as of 22:26, 16 June 2016
Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by $$[a]_q=\dfrac{1-q^a}{1-q}.$$
Properties
q-number when a=n is a natural number
q-factorial
References
- 2012: Thomas Ernst: A Comprehensive Treatment of q-Calculus ... (previous): (6.1)