Difference between revisions of "Q-number"
From specialfunctionswiki
Line 8: | Line 8: | ||
=References= | =References= | ||
− | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=}}: (6.1) | + | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=q-number when a=n is a natural number}}: (6.1) |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 22:27, 16 June 2016
Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by $$[a]_q=\dfrac{1-q^a}{1-q}.$$
Properties
q-number when a=n is a natural number
q-factorial
References
- 2012: Thomas Ernst: A Comprehensive Treatment of q-Calculus ... (previous) ... (next): (6.1)