Difference between revisions of "Q-exponential E sub q"
From specialfunctionswiki
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
− | + | [[Meromorphic continuation of q-exponential E sub q]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
Line 21: | Line 14: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=Meromorphic continuation of q-exponential E sub q}}: (6.150) | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 22:38, 16 June 2016
If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$ where $[k]_q!$ denotes the $q$-factorial.
Properties
Meromorphic continuation of q-exponential E sub q
Theorem: The following formula holds: $$D_q E_q(z) = aE_q(az),$$ where $D_q$ is the $q$-difference operator and $E_q$ is the $q$-exponential $E_q$.
Proof: █
References
- 2012: Thomas Ernst: A Comprehensive Treatment of q-Calculus ... (previous) ... (next): (6.150)