Difference between revisions of "Csch"
From specialfunctionswiki
Line 19: | Line 19: | ||
=See Also= | =See Also= | ||
[[Arccsch]] | [[Arccsch]] | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Tanh|next=Sech}}: 4.5.3 | ||
<center>{{:Hyperbolic trigonometric functions footer}}</center> | <center>{{:Hyperbolic trigonometric functions footer}}</center> | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 21:59, 21 June 2016
The hyperbolic cosecant function $\mathrm{csch} \colon \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R} \setminus \{0\}$ is defined by $$\mathrm{csch}(z)=\dfrac{1}{\sinh(z)},$$ where $\sinh$ denotes the hyperbolic sine. Since this function is one-to-one, its inverse function, the inverse hyperbolic cosecant function is clear.
Domain coloring of analytic continuation of $\mathrm{csch}$.
Properties
Derivative of hyperbolic cosecant
Antiderivative of hyperbolic cosecant
Relationship between cot, Gudermannian, and csch
Relationship between csch, inverse Gudermannian, and cot
See Also
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 4.5.3