Difference between revisions of "Sech"

From specialfunctionswiki
Jump to: navigation, search
Line 18: Line 18:
 
=See Also=
 
=See Also=
 
[[Arcsech]]
 
[[Arcsech]]
 +
 +
=References=
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Csch|next=Coth}}: 4.5.5
  
 
<center>{{:Hyperbolic trigonometric functions footer}}</center>
 
<center>{{:Hyperbolic trigonometric functions footer}}</center>
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 22:00, 21 June 2016

The hyperbolic secant function $\mathrm{sech} \colon \mathbb{R} \rightarrow (0,1]$ is defined by $$\mathrm{sech}(z)=\dfrac{1}{\cosh(z)}.$$ Since this function is not one-to-one, we define the inverse hyperbolic secant function as the inverse function of $\mathrm{sech}$ restricted to $[0,\infty)$.

Properties

Derivative of sech
Antiderivative of sech
Relationship between cosine, Gudermannian, and sech
Relationship between sech, inverse Gudermannian, and cos

See Also

Arcsech

References

<center>Hyperbolic trigonometric functions
</center>