Difference between revisions of "Relationship between csch and csc"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\mathrm{csch}(z)=i \csc(iz),$$ where $\csch$ denotes the hyperbolic cosecant and $\csc$ denotes the cosecant. ==Proof=...") |
(No difference)
|
Revision as of 22:05, 21 June 2016
Theorem
The following formula holds: $$\mathrm{csch}(z)=i \csc(iz),$$ where $\csch$ denotes the hyperbolic cosecant and $\csc$ denotes the cosecant.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous): 4.5.10