Difference between revisions of "Product representation of totient"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for distinct primes $p$ dividing $n$: $$\phi(n)=n \displaystyle\prod_{p | n} \left[ 1 - \dfrac{1}{p} \right],$$ where $\phi...")
 
 
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of totient equals z/((1-z) squared)|next=Euler totient is multiplicative}}: $24.3.2 I.C.$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of totient equals z/((1-z) squared)|next=Euler totient is multiplicative}}: $24.3.2 \mathrm{I}.C.$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 04:50, 22 June 2016

Theorem

The following formula holds for distinct primes $p$ dividing $n$: $$\phi(n)=n \displaystyle\prod_{p | n} \left[ 1 - \dfrac{1}{p} \right],$$ where $\phi$ denotes the totient.

Proof

References