Difference between revisions of "Mangoldt"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
The Mangoldt function is defined by the formula
 
The Mangoldt function is defined by the formula
 
$$\Lambda(n) = \left\{ \begin{array}{ll}
 
$$\Lambda(n) = \left\{ \begin{array}{ll}
\log p &; n=p^k \mathrm{\hspace{2pt}for\hspace{2pt}some\hspace{2pt}prime\hspace{2pt}}p\mathrm{\hspace{2pt}and\hspace{2pt}integer\hspace{2pt}}k\geq 1, \\
+
\log p, & n=p^k \mathrm{\hspace{2pt}for\hspace{2pt}some\hspace{2pt}prime\hspace{2pt}}p\mathrm{\hspace{2pt}and\hspace{2pt}integer\hspace{2pt}}k\geq 1, \\
0 &; \mathrm{otherwise}.
+
0, & \mathrm{otherwise}.
 
\end{array} \right.$$
 
\end{array} \right.$$
  

Revision as of 05:59, 22 June 2016

The Mangoldt function is defined by the formula $$\Lambda(n) = \left\{ \begin{array}{ll} \log p, & n=p^k \mathrm{\hspace{2pt}for\hspace{2pt}some\hspace{2pt}prime\hspace{2pt}}p\mathrm{\hspace{2pt}and\hspace{2pt}integer\hspace{2pt}}k\geq 1, \\ 0, & \mathrm{otherwise}. \end{array} \right.$$


Properties

Relationship between logarithm and Mangoldt

Videos

Number Theory 31: Liouville and mangoldt functions
Number theory: Arithmetic functions #1