Difference between revisions of "Airy zeta function"

From specialfunctionswiki
Jump to: navigation, search
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Airy zeta function at 2]]<br />
<strong>Proposition:</strong> The following formula holds:
 
$$\zeta_{\mathrm{Ai}}(2)=\dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
  
 
=References=
 
=References=

Revision as of 17:13, 24 June 2016

The Airy function $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way: $$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$

Properties

Airy zeta function at 2

References

Airy zeta function (Wikipedia)
Airy zeta function (Mathworld)