Difference between revisions of "Dirichlet beta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
__NOTOC__
 
The Dirichlet $\beta$ function is defined by
 
The Dirichlet $\beta$ function is defined by
 
$$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$
 
$$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$
Line 12: Line 13:
  
 
=Properties=
 
=Properties=
{{:Catalan's constant using Dirichlet beta}}
+
[[Catalan's constant using Dirichlet beta]]<br />
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 17:42, 24 June 2016

The Dirichlet $\beta$ function is defined by $$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ where $\Phi$ denotes the Lerch transcendent.


Properties

Catalan's constant using Dirichlet beta