Difference between revisions of "Euler E"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
__NOTOC__
 
The Euler polynomials $E_n(x)$ are [[orthogonal polynomials]] defined by
 
The Euler polynomials $E_n(x)$ are [[orthogonal polynomials]] defined by
 
$$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$
 
$$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$
Line 10: Line 11:
  
 
=Properties=
 
=Properties=
{{:Euler E generating function}}
+
[[Euler E generating function]]<br />
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 17:45, 24 June 2016

The Euler polynomials $E_n(x)$ are orthogonal polynomials defined by $$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$ where $e_k$ denotes an Euler number.

  • $E_0(x)=1$
  • $E_1(x)=x-\dfrac{1}{2}$
  • $E_2(x)=x^2-x$
  • $E_3(x)=x^3-\dfrac{3}{2}x^2+\dfrac{1}{4}$
  • $E_4(x)=x^4-2x^3+x$

Properties

Euler E generating function

Theorem: The following formula holds: $$E_n(x+y)=\displaystyle\sum_{k=0}^n {n \choose k} E_k(x)y^k.$$

Proof:

Theorem: The following formula holds: $$E_n'(x)=nE_{n-1}(x);n=1,2,\ldots.$$

Proof:


Orthogonal polynomials