Difference between revisions of "Struve function"
From specialfunctionswiki
Line 17: | Line 17: | ||
</div> | </div> | ||
− | + | [[Relationship between Struve function and hypergeometric pFq]]<br /> | |
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
Line 27: | Line 27: | ||
</div> | </div> | ||
− | + | [[Relationship between Weber function 0 and Struve function 0]]<br /> | |
− | + | [[Relationship between Weber function 1 and Struve function 1]]<br /> | |
=References= | =References= |
Revision as of 13:17, 25 June 2016
The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}$$
Properties
Theorem: If $x >0$ and $\nu \geq \dfrac{1}{2}$, then $\mathbf{H}_{\nu}(x) \geq 0$.
Proof: █
Relationship between Struve function and hypergeometric pFq
Theorem: The Struve function $H_n$ solves the following nonohomogeneous Bessel differential equation $$x^2y(x)+xy'(x)+(x^2-n^2)y(x)=\dfrac{4(\frac{x}{2})^{n+1}}{\sqrt{\pi}\Gamma(n+\frac{1}{2})}.$$
Proof: █
Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1