Difference between revisions of "Jacobi theta 2"
From specialfunctionswiki
(Created page with "__NOTOC__ The Jacobi $\vartheta_2$ function is defined by $$\vartheta_2(z,q)=2q^{\frac{1}{4}}\displaystyle\sum_{k=0}^{\infty} q^{k(k+1)} \cos(2k+1)z,$$ where $\cos$ denotes th...") |
(No difference)
|
Revision as of 21:34, 25 June 2016
The Jacobi $\vartheta_2$ function is defined by $$\vartheta_2(z,q)=2q^{\frac{1}{4}}\displaystyle\sum_{k=0}^{\infty} q^{k(k+1)} \cos(2k+1)z,$$ where $\cos$ denotes the cosine function.
Properties
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 16.27.1