Difference between revisions of "Jacobi theta 2"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "__NOTOC__ The Jacobi $\vartheta_2$ function is defined by $$\vartheta_2(z,q)=2q^{\frac{1}{4}}\displaystyle\sum_{k=0}^{\infty} q^{k(k+1)} \cos(2k+1)z,$$ where $\cos$ denotes th...")
 
Line 7: Line 7:
  
 
=References=
 
=References=
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Jacobi theta 2}}: 16.27.1
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Jacobi theta 1|next=Jacobi theta 3}}: 16.27.2
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 21:35, 25 June 2016

The Jacobi $\vartheta_2$ function is defined by $$\vartheta_2(z,q)=2q^{\frac{1}{4}}\displaystyle\sum_{k=0}^{\infty} q^{k(k+1)} \cos(2k+1)z,$$ where $\cos$ denotes the cosine function.

Properties

References