Difference between revisions of "Jacobi theta 2"
From specialfunctionswiki
(Created page with "__NOTOC__ The Jacobi $\vartheta_2$ function is defined by $$\vartheta_2(z,q)=2q^{\frac{1}{4}}\displaystyle\sum_{k=0}^{\infty} q^{k(k+1)} \cos(2k+1)z,$$ where $\cos$ denotes th...") |
|||
Line 7: | Line 7: | ||
=References= | =References= | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Jacobi theta 1|next=Jacobi theta 3}}: 16.27.2 |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 21:35, 25 June 2016
The Jacobi $\vartheta_2$ function is defined by $$\vartheta_2(z,q)=2q^{\frac{1}{4}}\displaystyle\sum_{k=0}^{\infty} q^{k(k+1)} \cos(2k+1)z,$$ where $\cos$ denotes the cosine function.
Properties
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 16.27.2