Difference between revisions of "Jacobi theta 4"
From specialfunctionswiki
(Created page with "Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_4$ function is defined by $$\vartheta_4(z,q)=1+2\displaystyle\sum_{k=1}^{\infty} (-1)^k q^{k^2} \cos(2kz),$$ where $...") |
(No difference)
|
Revision as of 21:38, 25 June 2016
Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_4$ function is defined by $$\vartheta_4(z,q)=1+2\displaystyle\sum_{k=1}^{\infty} (-1)^k q^{k^2} \cos(2kz),$$ where $\cos$ denotes the cosine function.
Properties
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 16.27.4