Difference between revisions of "Q-Sin"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The function $\mathrm{Sin}_q$ is defined by
 
The function $\mathrm{Sin}_q$ is defined by
 
$$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$
 
$$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$
where $E_q$ denotes the [[q-exponential E|$q$-exponential $E$]].
+
where $E_q$ denotes the [[q-exponential E sub q|$q$-exponential $E$]].
  
 
=Properties=
 
=Properties=
Line 22: Line 22:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=External links=
 +
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
  
 
=References=
 
=References=
[http://homepage.tudelft.nl/11r49/documents/as98.pdf]
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=findme}}: (6.168)
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 23:09, 26 June 2016

The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E$.

Properties

Theorem

The following formula holds: $$E_q(iz)=\mathrm{Cos}_q(z)+i\mathrm{Sin}_q(z),$$ where $E_q$ is the $q$-exponential $E_q$, $\mathrm{Cos}_q$ is the $q$-$\mathrm{Cos}$ function and $\mathrm{Sin}_q$ is the $q$-$\mathrm{Sin}$ function.

Proof

References

Theorem: The following formula holds: $$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$ where $D_q$ is the q-difference operator, $\mathrm{Sin}_q$ is the $q$-Sine function, and $\mathrm{Cos}_q$ is the $q$-cosine function.

Proof:

Theorem: The general solution of the $q$-difference equation $D_q^2 y(x) + k^2 y(x) = 0$ is $y(x)=c_1 \mathrm{Cos}_q(kz) + c_2 \mathrm{Sin}_q(kz).$

Proof:

External links

[1]

References