Difference between revisions of "Q-Sin"

From specialfunctionswiki
Jump to: navigation, search
Line 28: Line 28:
  
 
=References=
 
=References=
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=findme}}: (6.168)
+
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=q-Cos}}: (6.168)
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 23:23, 26 June 2016

The function $\mathrm{Sin}_q$ is defined by $$\mathrm{Sin}_q(z)=\dfrac{E_q(iz)-E_q(-iz)}{2i},$$ where $E_q$ denotes the $q$-exponential $E_q$.

Properties

q-Euler formula for E sub q

Theorem: The following formula holds: $$D_q \mathrm{Sin}_q(bz) = b \mathrm{Cos}_q(bz),$$ where $D_q$ is the q-difference operator, $\mathrm{Sin}_q$ is the $q$-Sine function, and $\mathrm{Cos}_q$ is the $q$-cosine function.

Proof:

Theorem: The general solution of the $q$-difference equation $D_q^2 y(x) + k^2 y(x) = 0$ is $y(x)=c_1 \mathrm{Cos}_q(kz) + c_2 \mathrm{Sin}_q(kz).$

Proof:

External links

[1]

References