Difference between revisions of "Relationship between Bessel J and hypergeometric 0F1"
From specialfunctionswiki
Line 7: | Line 7: | ||
==References== | ==References== | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Revision as of 20:27, 27 June 2016
Theorem
The following formula holds: $$J_{\nu}(z) = \left( \dfrac{z}{2} \right)^{\nu} \dfrac{1}{\Gamma(\nu+1)} {}_0F_1 \left(-;\nu+1;-\dfrac{z^2}{4} \right),$$ where $J_{\nu}$ denotes the Bessel function of the first kind, $\Gamma$ denotes the gamma function and ${}_0F_1$ denotes the hypergeometric pFq.