Difference between revisions of "Riccati-Bessel S"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Riccati-Bessel function $S_n$ is defined by the formula $$S_n(z)=\sqrt{ \dfrac{\pi x}{2} \right) J_{n+\frac{1}{2}}(z),$$ where $\pi$ denotes pi and $J_{n+\frac{1}{2}}$...")
 
Line 1: Line 1:
 
The Riccati-Bessel function $S_n$ is defined by the formula
 
The Riccati-Bessel function $S_n$ is defined by the formula
$$S_n(z)=\sqrt{ \dfrac{\pi x}{2} \right) J_{n+\frac{1}{2}}(z),$$
+
$$S_n(z)=\sqrt{ \dfrac{\pi x}{2} } J_{n+\frac{1}{2}}(z),$$
 
where $\pi$ denotes [[pi]] and $J_{n+\frac{1}{2}}$ denotes the [[Bessel J|Bessel function of the first kind]].
 
where $\pi$ denotes [[pi]] and $J_{n+\frac{1}{2}}$ denotes the [[Bessel J|Bessel function of the first kind]].
  

Revision as of 21:02, 27 June 2016

The Riccati-Bessel function $S_n$ is defined by the formula $$S_n(z)=\sqrt{ \dfrac{\pi x}{2} } J_{n+\frac{1}{2}}(z),$$ where $\pi$ denotes pi and $J_{n+\frac{1}{2}}$ denotes the Bessel function of the first kind.

Properties

References