Difference between revisions of "Hypergeometric 0F1"
From specialfunctionswiki
(Created page with "The hypergeometric ${}_0F_1$ is defined by the series $${}_0F_1(;a;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(a)_k k!},$$ where $(a)_k$ denotes the Pochhammer symbol...") |
(No difference)
|
Revision as of 21:55, 27 June 2016
The hypergeometric ${}_0F_1$ is defined by the series $${}_0F_1(;a;z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{(a)_k k!},$$ where $(a)_k$ denotes the Pochhammer symbol and $k!$ denotes the factorial.