Difference between revisions of "Fibonacci polynomial"

From specialfunctionswiki
Jump to: navigation, search
Line 50: Line 50:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=References=
 +
* {{PaperReference|Sur la série des inverse de nombres de Fibonacci|1899|Edmund Landau|next=findme}}
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 23:23, 27 June 2016

Fibonacci polynomials are defined by $$F_n(x)=\left\{ \begin{array}{ll} 0&; n=0 \\ 1&; n=1 \\ xF_{n-1}(x)+F_{n-2}(x)&; n\geq 2. \end{array} \right.$$

The first few Fibonacci polynomials are $$F_0(x)=1,$$ $$F_1(x)=1,$$ $$F_2(x)=x,$$ $$F_3(x)=x^2+1,$$ $$F_4(x)=x^3+2x,$$ $$F_5(x)=x^4+3x^2+1.$$

Note the similarity with the Lucas polynomials.

Properties

Theorem: The following formula holds: $$\displaystyle\sum_{k=0}^{\infty} F_k(x)t^n = \dfrac{t}{1-xt-t^2},$$ where $F_k$ denotes a Fibonacci polynomial.

Proof:

Theorem: The following formula holds: $$F_{-n}(x)=(-1)^{n-1}F_n(x).$$

Proof:

Theorem: The following formula holds: $$F_{n+1}(x)F_{n-1}(x)-F_n(x)^2=(-1)^n.$$

Proof:

Theorem: The following formula holds: $$F_{2n}(x)=F_n(x)L_n(x),$$ where $F_n$ denotes a Fibonacci polynomial and $L_n$ denotes a Lucas polynomial.

Proof:

References