Difference between revisions of "Hypergeometric pFq"
(→${}_0F_1$) |
|||
Line 23: | Line 23: | ||
==${}_0F_1$== | ==${}_0F_1$== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
==${}_1F_0$== | ==${}_1F_0$== |
Revision as of 05:22, 5 July 2016
Let $p,q \in \{0,1,2,\ldots\}$ and $a_j,b_{\ell} \in \mathbb{R}$ for $j=1,\ldots,p$ and $\ell=1,\ldots,q$. We will use the notation $\vec{a}=\displaystyle\prod_{j=1}^p a_j$ and $\vec{b}=\displaystyle\prod_{\ell=1}^q b_{\ell}$ and we define the notations $$\vec{a}^{\overline{k}} = \displaystyle\prod_{j=1}^p a_j^{\overline{k}},$$ and $$\vec{a}+k = \displaystyle\prod_{j=1}^p (a_j+k),$$ (and similar for $\vec{b}^{\overline{k}}$). Define the generalized hypergeometric function $${}_pF_q(a_1,a_2,\ldots,a_p;b_1,\ldots,b_q;t)={}_pF_q(\vec{a};\vec{b};t)=\displaystyle\sum_{k=0}^{\infty}\dfrac{\displaystyle\prod_{j=1}^p a_j^{\overline{k}}}{\displaystyle\prod_{\ell=1}^q b_{\ell}^{\overline{k}}} \dfrac{t^k}{k!}.$$
Contents
Properties
Convergence of Hypergeometric pFq
Derivatives of Hypergeometric pFq
Differential equation for Hypergeometric pFq
Particular hypergeometric functions
Hypergeometric 0F0
Hypergeometric 1F0
Hypergeometric 0F1
Hypergeometric 1F1
Hypergeometric 2F1
Hypergeometric 1F2
Hypergeometric 2F0
Hypergeometric 2F1
${}_0F_1$
${}_1F_0$
${}_1F_1$
${}_1F_2$
Relationship between Struve function and hypergeometric pFq
${}_2F_0$
Bessel polynomial generalized hypergeometric
Videos
Special functions - Hypergeometric series
References
Notes on hypergeometric functions
Rainville's Special Functions
Abramowitz and Stegun
Note on a hypergeometric series - Cayley